Estimation of the Condition Number of a Square Matrix with Hager's Method

Haocheng An haochengan@utexas.edu

Yiran Shen shenyiran91@utexas.edu

Department of Computer Science, Institute for Computational Engineering and Sciences.

The University of Texas at Austin

The Science of High-Performance Computing Group

Abstract

The condition number of a matrix quantifies how accurately the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is computed. More specifically, it equals the maximum by which a relative error in the right-hand side b can be magnified into the relative accuracy of the solution. In this study we examine Hager's method for estimating the condition number of a matrix when using the one-norm and infinity norm.

Background Information

Conditioning

Consider solving a linear system of equation

$$Ax = b$$

In reality, the input is not accurate, so what we actually solve maybe the equation below

$$A(x + \delta x) = b + \delta b$$

We want to explore how the relative error on b can effect the relative error on x

$$\frac{||\delta x||}{||x||} \leq \kappa(A, b, \delta b) \frac{||\delta b||}{||b||}$$

Definitions

1 Vector norm: For vector

 $\mathbf{v} = (\mathbf{v_0}, \mathbf{v_1} \dots \mathbf{v_{n-1}})^T$ define l_p norm as

$$||v||_p = (\sum_{i=0}^{n-1} (v_i)^p)^{1/p}$$

2 Matrix norm: For matrix A_{m*n}, define p norm of a matrix as

$$||A||_{p} = max \frac{||Ax||_{p}}{||x||_{p}}$$

Theorem:

For any matrix A, we have $||A||_1 = ||A^T||_{\infty}$

Condition Number

||A|| Maximum Magnification

 $\frac{1}{|A^{-1}||}$ Inverse of the Minimal Magnification

The ratio :the effect of small change at rhs has on the lhs

We define the **condition number** as

$$\mathbf{K}(A) = ||A|| * ||A^{-1}||$$

Performance and Accuracy

All data coming from TACC Stampede System (Intel® Xeon® CPU E5-2680, Sandy Bridge, 23.76 GFLOPS peak for single-core, 21.6 GFLOPS/core peak for multi-core) processor using Intel C compiler version 15.0.2 with optimization flag -O2.

Full Square Matrix Performance Full Matrix, L1 norm

Lower Triangular Matrix Performance

Lower Triangular Matrix Accuracy Lower Triangle Matrices, L1 norm Triangular Matrix, L1-norm 1.8 1.6 1.4 1.2 1.2

Conclusion

Performance

Full Matrices

MKL Better than FLA

Triangular Matrices
Naïve C extremely good when small
FLA good in general.
MKL generally stable

Accuracy

Full Matrices
FLA estimates good

Triangular Matrices

Generally good with bad on one of them

Methodology and Algorithm

Motivations

- (1) Computing Inverse matrix expensive $O(n^3)$
- (2) LAPACK require Pass in 1-norm when computing Condition Number

SUBROUTINE DGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO)

Condition Number function header in LAPACK
(3) GOTO Considered Harmful

GOTO In LAPACK Routine

Algorithm for Computing L₁ norm

Input: Matrix A, dimension n

- (0) Compute $||A||_1 = \max \sum_{i=1}^n ||A_{ij}||_1$
- (1) Pick the vector $x = \frac{1}{n} (1,1,1...1)^T$
- (2) Factor A = LU
- (3) Solve Lb = x and Uy = b
- (4) Set $v = sign(A^{-1}x) = sign(y)$
- (5) Solve U'd = y and L'g = d
- (6)If $||g_{\infty}|| < g^T x$, then estimate as

$$est(||A^{-1}||_1) = ||A^{-1}x||_1$$

- (7) else set $x = e_j$ where $g_j = g_\infty$ and repeat from (3)
- (8) $K(A) = ||A|| * ||A^{-1}||$

Future Work

- 1 Extend to complex matrices
- 2 Extend to full matrices of C implementation
- 3 Find the condition number under l_2 norm
- 4 Deal with both overflow and underflow

Reference

https://github.com/flame/libflame
https://github.com/flame/libflame
http://www.netlib.no/netlib/lapack/double/dgecon.f
Nicholas J. Higham A Survey of Condition Number Estimation for Triangular Matrices(1987)
Robert A. van de Geijn, Linear Algebra: Foundations to Frontiers A Collection of Notes on
Numerical Linear Algebra

Acknowledgements

The Science of High Performance Computing group ICES Moncrief Undergraduate Summer Internship