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Background Information

Methodology and Algorithm

Algorithm for Computing L1 norm
Input: Matrix A, dimension n

(0) Compute ||𝐴||1 = max 𝑖=1
𝑛 ||𝐴𝑖𝑗||1

(1) Pick the vector 𝑥 =
1

𝑛
(1,1,1…1)T

(2) Factor 𝐴 = 𝐿𝑈
(3) Solve 𝐿𝑏 = 𝑥 and 𝑈𝑦 = 𝑏
(4) Set 𝑣 = 𝑠𝑖𝑔𝑛 𝐴

− 1𝑥 = 𝑠𝑖𝑔𝑛 𝑦
(5) Solve 𝑈’𝑑 = 𝑦 and 𝐿’𝑔 = 𝑑
(6)If ||g∞|| < 𝑔

𝑇𝑥, then estimate as

𝑒𝑠𝑡(||𝐴
− 1||1) = ||𝐴

− 1𝑥||1
(7) else set 𝑥 = 𝑒𝑗 where 𝑔𝑗 = 𝑔∞ and repeat from (3)

(8) 𝐾(𝐴) = ||𝐴|| ∗ ||𝐴
− 1||

Conditioning

Consider solving a linear system of 

equation

𝑨𝒙 = 𝒃
In reality, the  input is not accurate, 

so what we actually solve maybe 

the equation below

𝑨(𝒙 + 𝜹𝒙) = 𝒃 + 𝜹𝒃𝜹
We want to explore how the 

relative error on 𝑏 can effect the 

relative error on 𝑥

||𝜹𝒙||

| 𝒙 |
≤ 𝜿(𝑨, 𝒃, 𝜹𝒃)

||𝜹𝒃||

||𝒃||
Definitions

1 Vector norm: For vector

𝒗 = 𝒗𝟎, 𝒗𝟏…𝒗𝒏 − 𝟏
𝑻 define 𝑙𝑝 norm as

||𝒗||𝒑 = ( 

𝒊=𝟎

𝒏−𝟏

𝒗𝒊
𝒑)𝟏
/𝒑

2 Matrix norm: For matrix Am*n ,define p 

norm of a matrix as 

||𝑨||𝒑 = 𝒎𝒂𝒙
| 𝑨𝒙 |

𝒑

| 𝒙 |
𝒑

||𝑨|| Maximum Magnification
𝟏

𝑨
−
𝟏 Inverse of the Minimal Magnification

The ratio :the effect of small change at rhs

has on the lhs

We define the condition number as 

𝚱 𝑨 = 𝑨 ∗ 𝑨
− 𝟏

The condition number of a matrix quantifies how accurately the solution to Ax = b is computed.  More 

specifically, it equals the maximum by which a relative error in the right-hand side b can be magnified 

into the relative accuracy of the solution.  In this study we examine Hager’s method for estimating the 

condition number of a matrix when using the one-norm and infinity norm.

Motivations
(1) Computing Inverse  matrix expensive 𝑂(𝑛3)

(2)  LAPACK require Pass in 1-norm when 

computing Condition Number

Condition Number function header in LAPACK

(3) GOTO Considered Harmful

GOTO  In LAPACK Routine

Performance and Accuracy

Future Work

1 Extend to complex matrices

2 Extend to full matrices of C implementation

3 Find the condition number under 𝑙2 norm

4 Deal with both overflow and underflow
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Error Full Matrix AccuracyFull Square Matrix Performance

Lower Triangular Matrix Performance

Theorem: 

For any matrix A, we have

||𝑨||𝟏 = ||𝑨
𝑻||∞

Conclusion
Performance

Full Matrices
MKL Better than FLA 

Triangular Matrices
Naïve C extremely good when small

FLA good in general.

MKL generally stable

All data coming from TACC Stampede System (Intel® Xeon® CPU E5-2680, Sandy Bridge, 23.76 GFLOPS peak for single-core, 

21.6 GFLOPS/core peak for multi-core) processor using Intel C compiler version 15.0.2 with optimization flag -O2.

Condition Number

Y axis reflects esti cond/lapack cond

Want same order 

0.9~10 is acceptable,1 reflects exact match 

Accuracy

Full Matrices

FLA estimates good

Triangular Matrices

Generally good with bad on one of them

Lower Triangular 

Matrix Accuracy

Error


