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Kalman filter is an important algorithm used in control theory. It takes

an initial state as input and a series of observations over time and output the

hidden state.

The advection-diffusion equation is a PDE that characterizes the com-

bination effect of advection and diffusion of a given object in the solvent. Such

a problem is within the domain that the Kalman filter can solve.

In this report, I will first derive the Kalman filter algorithm, then ex-

amine its application to an advection-diffusion equation. I will use different

metrics to quantify the numerical performance of the algorithm. The contribu-

tion of this report lies in the combination of the Kalman filter algorithm with

the advection equation. Also, an ample amount of graphs that can visually

tell us the evolving trend of the state.
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Chapter 1

Introduction

The Partial differential equation (PDE) plays an important role in

mathematical modeling in science and engineering. Formally, it is defined

as[8]

a differential equation that contains unknown multivariable functions

and their partial derivatives.

PDE serves as an implicit function that describes the relationship be-

tween different variables and we can learn a lot of useful information from

it.

hIPPYlib is a mathematical Python library that based on Fenics’ dis-

cretization and PETSc for scalable performance. The library implements many

operators required for solving inverse problems in matrix-free form.

In this report, under the guidance of numerical PDE solving algorithms,

we will pick out necessary operators from hIPPYlib, with the help of numpy,

re-organize the operator, implement the algorithm to solve the problem nu-

merically.

1



1.1 Motivation

With the complex relations between variables in PDEs, very few of

them can be solved explicitly. It motivates us to think of numerical solu-

tions. By discretizing the domain space and extracting sample data points,

we know how do some variables evolve with the change of others. However,

such a construction may be hindered by other factors. For example, we may

accidentally pick a data point that with very low probability, we may have

very high variance and thus interferes the main evolving stream. Also, the

previous knowledge at times can also guide the next state. It is very natural

to come up with an idea of coordinating the current observation point and

the prior knowledge together to achieve better performance. In this paper, we

would like to review the Kalman filter algorithm, which exactly combining the

aforementioned two parts and numerically estimate the hidden state.

In this report, we would like to consider a 2 dimension advection-

diffusion equation. In order to intuitively understand the equation, let us

consider the following scenario qualitatively: a river is running with some

chemicals poured down at the source of the river (Assume the chemicals can

be fully dissolved in water and does not have chemical reactions with water).

The observer stands somewhere in the middle of the river and observes the con-

centration of the chemical. On one hand, as the concentration of the chemical

is high in the place you initially placed the chemicals, it should spread around

the water to lower it. This process is called diffusion . On the other hand,

the water is running inside, so the chemical will go along the way and thus
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affect the concentration at the observation point. This process is called the

advection. The concentration of the substance is jointly affected by these two

and are independent of each other. so we have the following PDE:

The State equation [5]:

∂u

∂t
− κ∆u︸︷︷︸

diffusion

+ v · ∇u︸ ︷︷ ︸
advection

= 0 in X× (0, T ) (1.1)

With initial and boundary condition:

u(·, 0) = m0 in X (1.2)

κ∇u · n = 0 on ∂X× (0, T ) (1.3)

Specifically, In Equation 1.1, u is the variable that we are interested

in, refer to the concentration in the description above.

κ describes the diffusivity, which is a proportionally constant between

the molar flux and the gradient in concentration of the given species[7].

v is the velocity field[7], which describes how fast the object moves,

just like the water speed mentioned above.

X specifies the state space where the variable u lives and T specifies

the time-space.

∆ is the Laplace operator. Specifically, ∆u is the second-order deriva-

tive with respect to space.

∇ is the gradient operator and ∇u represents the concentration gradi-

ent.

3



Equation 1.2 reflects the distribution of the concentration, i.e at time

0.

In Equation 1.3 , ∂X reflects the boundary of the state space, n is the

normal vector that indicates the direction of the plane.

In this report, I will discretize the equation 1.1 for computation. For

the non-derivative terms in it, the discretization is done by taking the value

at a specific time and location. For the derivative terms we can use the finite

difference method in time and finite element method(FEM) in space.

Then, we combine the observation and state at previous timestep by

Hidden markov model(HMM) to estimate the next iteration. In the linear

transformation settings, it is also known as kalman filter.

1.2 Report Organization

This report is composed of four chapters.

Chapter 1 is the current chapter. This chapter gives a high-level de-

scription of the PDE problem and introduces the structure of the report.

Chapter 2 is about the mathematical background of the Kalman Fil-

ter. It will discuss statistical and PDE background respectively. In the end,

we’ll combine these two and introduce the Kalman Filter algorithm. We will

explicitly derive the algorithm from 0 to 1 and using induction to show the

latter steps follows. The actual implementation of the algorithm will serve as

the summary part of the whole chapter.
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Chapter 3 is about the numerical experiments. We apply the algorithm

introduced in the previous chapter to advection-diffusion function. We start

from the simplest case where prior, observation noise and process noise are all

independent. Then we explore more on the dependent case, examine how the

dependence affects the prediction.

Chapter 4 is the conclusion and future work, where we will summarize

the work first and then see what are possible options of advancing the algo-

rithms or apply the algorithm to broader settings or we may develop some

parallel way to run the algorithm efficiently.

Also to keep the consistent with the mathematical derivation and com-

putation implementation, throughout the report, unless specified, the initial

state or the first element is assumed to have index 0. For an array of length

n, we assume the indices are 0, 1, · · ·n− 1.
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Chapter 2

Mathematical Background

Solving the Bayesian inference inverse problem is not easy. It requires

some prerequisite knowledge. Now, let us explore some statistical and PDE

properties and then gradually move toward the actual algorithm.

2.1 Statistical Background

2.1.1 Bayes’ Theorem

Bayes’ theorem builds relations between random variables in condi-

tional probability. The basic case of it is stated as below:

Theorem 1. Bayes’ Theorem

Given random variale A and B, we have

P (A|B) =
P (B|A) ∗ P (A)

P (B)
∝ P (B|A) ∗ P (A) (2.1)

With the formula shown in Theorem 1, in the Bayesian inference set-

tings, we would label P (A) as prior, P (B|A) as likelihood, and P (B) as

posterior and we will use these terms throughout the whole report.
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2.1.1.1 Infinite Dimension Bayes’ Theorem

The previous section illustrates finite dimensional settings of Bayes’

theorem. Intuitively, it means transforming from prior to posterior through

likelihood. In this report, we mainly deal with infinite dimension problem un-

der Gaussian measure. For the initial step, initial state (s0) can serve as prior

and the observation at the next iteration can serve as likelihood. Combination

of these two yields the prediction s1. For later on, if we want sk, we can com-

bine sk−1 and observation to get the prediction space. However, all {si}n−1
i=0

are infinite space so we need to generalize the previous theorem. Luckily, we

know that the probability space is defined to be a measure space with a total

measure of 1 and Radon-Nikodym theorem can generalize the Bayes’ theorem.

Definition 2.1.1. Absolute continuity

Consider a measure space (S, S) and two measures µ and ν defined in

this space, ν is said to be absolute continuous with respect to µ if

∀S ∈ S, if µ(S) = 0, ν(S) = 0 (2.2)

holds. The relation is denoted as ν � µ.

Theorem 2. Radon-Nikodym theorem

Consider two measures ν and µ of a measurable space (S, S): If v � µ,

then

∃f ∈ L+
0 , ∀A ⊆ S, ν(A) =

∫
A

fdµ (2.3)

7



We omit the proof of this theorem as it is beyond the scope of the

report.

Combine the measure theory with Bayes, let µ be the probability mea-

sure and (M,M) be the measure space, we have the infinite dimension equation

below:

µposterior(m|d) ∝ µlikelihood(d|m)µprior (2.4)

Rewrite the equation above,

∀M ∈M, µposterior(M) ∝
∫
M

µlikelihooddµprior. (2.5)

By Theorem 2 , we have the Radon-Nikodym derivative:

dµposterior
dµprior

∝ µlikelihood (2.6)

As shown above, we have the transformation from prior to posterior in

one iteration. However, to keep the system running, we still need bridge from

the posterior to the prior of next iteration. Markov property is here to help.

2.1.2 Markov Property

Markov property can be intuitively understood as “memory-less” prop-

erty. It means that the future distribution we would like to predict depends

only on the current state. The state we have previously, however, are of

no additional information revealed to us. This is a good reflection of the

advection-diffusion system. For any given time tm, our goal is to predict tn

8



where tn > tm. All we care is the state at tm and how do advection and dif-

fusion effects on the state at tm rather than how do we get to tm through the

previous advection, diffusion operation. Formally, we have

Definition 2.1.2. Markov property for continuous time

let {Xi} be a sequence of states. Given 0 ≤ s < t, we have:

P (Xt = j|Xs) = P (Xt = j|Xm, 0 ≤ m ≤ s) (2.7)

In this report, the system changes over time continuously. However,

for every given time t, theoretically, we have an infinite number of timestamps

before and we need to ensure the independence regarding each of them. This

is unrealistic as ∀ti,∀tj < ti, ∃tk s.t. tj < tk < ti. So we will have to consider

discretize the time and apply the Markov property to the discretized case:

Definition 2.1.3. Markov property for discrete time

P (Xi+1 = j|Xi) = P (Xi+1 = j|Xi, Xi−1, · · ·X0) (2.8)

For simplicity of implementation, we have the same interval length

between two timestamp and define time gap as ∆t = ti − ti−1,∀i > 0. If ∆t

is sufficiently small, the system won’t change dramatically in that interval, so

the discrete model serves as a good approximation to the original continuous

model.
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2.1.3 Vector Variance

Consider column vectors X = [x0, x1, · · · xn−1]T , by definition of covari-

ance,

cov(X) = E[(X − E(X))⊗ (X − E(X))] (2.9)

⊗ in Equation 2.9 is the tensor product between those two variables.

Now, let us consider the linear transformation on X.

Theorem 3. Linear Transformation on Covariance

Given linear operator A and random vector b independent from X,

cov(AX + b) = Acov(X)AT + cov(b) (2.10)

Proof. For simplicity, we will derive the discrete case here. For the continuous

case, it follows the similar pattern.

As b is independent from X and A,

cov(AX + b) = cov(AX) + cov(b) (2.11)

Now consider plug in the definition of covariance, we have

cov(AX) = E[(AX − E(AX)⊗ (AX − E(AX))] (2.12)

Extract A, AT out from the equation before, we get the result.

cov(AX) = AE((X − E(X))⊗ (X − E(X)))︸ ︷︷ ︸
cov(X)

AT (2.13)

Combine equation 2.13 and 2.11, we get 2.10 and thus finish the proof.

10



2.2 PDE Properties

We need to define some operators on PDE and explore some properties

before moving to the actual Kalman filter.

2.2.1 Space properties

PDE is about the relation between different spaces. We need to define

various spaces before moving on to the relation describing them.

Definition 2.2.1. Inner-Product[1]

An Inner-Product on a vector space H is a map H(·, ·) : H ×H 7→ F

satisfy the follows

(a) The map is linear in the first arguments, ∀α, β ∈ F and x, y, z ∈ H,

(αx+ βy, z) = α(x, z) + β(y, z) (2.14)

(b) It is conjugate symmetric. ∀x, y ∈ H,

(x, y) = (y, x) (2.15)

(c) The map is positive definite, meaning

∀x ∈ H, (x, x) = 0 if and only if x = 0 (2.16)

Definition 2.2.2. Hilbert Space

Let H be a complete space that has the inner-prodcut described above,

then H is a hilbert space.

11



In this report, we are mainly dealing with Rd.

For Rd, consider x, y ∈ Rd, x = (x0, x1, · · · xd−1) and y = (y0, y1, · · · yd−1).

Defined inner product: (x, y) =
∑d−1

i=0 xiyi, also define the norm as ||x|| =

(x, x)
1
2 . For (a) in Definition 2.2.2,

(αx+ βy, z) =
d−1∑
i=0

(αxi + βyi)zi = α

d−1∑
i=0

xizi + β

d−1∑
i=0

yizi = α(x, z) + β(y, z)

(2.17)

(b) and (c) can be easily verified. Also Rd is comlete by construction

so Rd is a hilbert space.

Definition 2.2.3. State Space M

A state space is a hilbert space where the PDE function defined on. In

other words, it reflects the domain of the PDE.

The PDE is also known as the state equation and we will use two terms

interchangably throughout the report.

However, state space is hidden and no direct message revealed. Also,

for the advection-diffusion equation, the state space is of infinite dimension

that cannot be implement through computer. It motivates us to draw some

observation samples from it to serve as an indicator of the state space behavior.

Formally, we have

Definition 2.2.4. Observation Space D

12



Sample points are taken from a specific state space and timestamp.

The space where these points live in is called the observation space. It is the

range of the state equation.

The Observation operator B is the operator that extracts the point we

need from the state space. so we have, B : M 7→ D

We use the following diagram to summary definitions introduced in this

section.

Figure 2.1: Relation between state space, observation space and observation
operator.

2.2.2 Other properties

Definition 2.2.5. Hessian matrix

Let f : Rn 7→ R and x = (x0, x1, · · ·xn−1) ∈ Rn, H is the hessian

matrix where Hij = ∂2f
∂xi∂xj

13



Theorem 4. Given a multivariate gaussian distribution x ∼ N(x̄, Cx), the

covariance matrix C is the inverse of the hessian matrix H, i.e Cx = H−1

Proof. By definition, the probability density function(PDF) of x is given by

p(x) ∝ exp (−1

2
(x− x∗)T )C−1

x (x− x∗) (2.18)

Take the negative logrithm of 2.18, we have

J(x) = −ln p(x) ∝ 1

2
(x− x∗)TC−1

x (x− x∗) (2.19)

Take the derivatives with respect to xi, xj respectively, we have

Hij =
∂2J(x)

∂xi∂xj

∣∣∣∣
x=x∗

= C−1
x ij (2.20)

∀i, j, Equation 2.20 holds and invert both right and left side, we have Cx =

H−1

Sometimes, the state equation is hard to solve directly, or it may have

some quirky behavior on some random part, so we would like to consider

weaken the restriction and get an approximate solution. Formally, the weak

solution is set up as follows:

Definition 2.2.6. Weak Formulation and Weak Solution[6]

Given a differential equation, rewrite it in such a way that no derivatives

of the solution of the equation show up. The new form is called the weak

formulation. Usually, the new form is formulated by multiply by another

14



function and use integral by parts to retrieve the solution. In this process, the

function we multiply is called test function and the function we would like to

get the solution is trial function. The solution of the trial function is called

weak solution.

In the pratical setting, usually we transfer the state equation to linear

algebra like problems and use the linear algebra language to solve the problem.

In other words, we would like to solve the equation about u like

Au = f. (2.21)

where A : X 7→ X′, u ∈ X and f ∈ X′. X is a banach space and X′ is the

corresponding dual space of X.

2.3 Kalman Filter

With the statistical and PDE properties introduced in previous sec-

tions, we can finally derive the Kalman filter algorithm. But before that, we

need to quantitatively understand the model.

2.3.1 Data Assimilation

Given the fact that the combination of prior and likelihood can create

a new probability distribution that can better quantify some random variable,

we can use such property to conduct prediction on random variables. This

combination and prediction process is formally known as data assimilation.

Definition 2.3.1. Data Assimilation [4]

15



Data assimilation is the integration of two information resources:

a) A mathematical model of a time-dependent physical system, or a

numerical implementation of such model

b) A sequence of observations of that system, usually corrputed by

some noise.

In general, we need two equations to describe the two-step of data

assimilation respectively. In the following, m̂p|q means the estimate of m at

time p given the observation up to time(or only at by Markov property) q and

p ≥ q. The similar notation also for the covariance of the distribution:Pp|q.

The Kalman filter algorithm of the data assimilation works for the system like

follows: ∀mi ∈M.

mk|k−1 = Fkmk−1|k−1 + ξk (2.22)

mk is the model that change over time. It reflects the state where the

system is in on the k-th iteration.

Fk : M 7→ M is a state transition model. In this model settings, it is

the combination of the advection and diffusion that serves as Fk.

Here we need to get the closed form of the transition operator before

moving on. Let us recap equation 1.1. It is.

∂u

∂t
− κ∇u + v ·∆u = 0 (2.23)

As equation 1.1 is hard to solve, we consider formulate equation follow

the pattern as Equation 2.21.

16



So let us multiply by test function w ∈ W at both right and left side

of the equation, we have∫
X

[
∂u

∂t
− κ∇u + v ·∆u]w = 0 (2.24)

Refactor the equation above, we have

(
∂u

∂t
,w) + a(u,w) = 0 (2.25)

where a(u,w) is defined as follows:

a(u,w) =

∫
X

[−κ∇u + v ·∆u]w

=

∫
X

−κ∇uw + v · ∇(∇uw)︸ ︷︷ ︸
∇u · w = 0

−v(∇u∇w)

= −
∫
X

κ∇uw + v(∇u∇w)

(2.26)

We can approximate the trial and test spaces by finite element methods.

u =
N−1∑
j=0

ϕjuj,uj ∈ Xh = span〈ϕ0, ϕ1, · · ·ϕN−1〉 ⊂ X (2.27)

w =
N−1∑
i=0

φiwi,wi ∈Wh = span〈φ0, φ1, · · ·φN−1〉 ⊂W (2.28)

where φi and ϕj are both Lagrangian finite element basis, just represent

in different variance of same greek letter for formulating u and w respectively.

so plug in our results to Equation 2.25,

M
du

dt
+ Au = 0 (2.29)
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where A is the assembled version of a(u,w).i.e:

A =

[ a(ϕ0, φ0) · · · a(ϕN−1, φ0)
...

. . .
...

a(ϕ0, φN−1) · · · a(ϕN−1, φN−1)

]
(2.30)

The mass matrix is defined as Mij = (ϕj, φi). In matrix format, it is

M =

[ (ϕ0, φ0) · · · (ϕN−1, φ0)
...

. . .
...

(ϕ0, φN−1) · · · (ϕN−1, φN−1)

]
(2.31)

Rewrite Equation 2.29 in forward finite difference format, we have

M
un+1 − un

∆t
+ Aun+1 = 0 (2.32)

Re-organize the equation and we get the relation between un and un+1:

(
M

∆t
+ A)un+1 =

M

∆t
un (2.33)

Combine all derivation above, we have the closed form for F :

F = (
M

∆t
+ A)−1(

M

∆t
)︸ ︷︷ ︸

T−1S

(2.34)

This F is only responsible for one iteration of updates. If we would like

to get ui to uj, (j > i) without perturbing noise, we can use uj = F j−iui.

ξk is the process noise. It characterizes the uncertainty of the PDE.

With the evolving of the system, some outside factors may come into play and

they affect the state that the system may land in.
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To fulfill the requirement of part b), we have

dk = Bmk|k−1 + ηk (2.35)

where at time k,

B is the observation operator as shown in Figure 2.2.1 that transforms

data from state space to observation space.

ηk characterizes the observation noise. Basically this comes from the

inaccuracy of measurement on dk.

Part (a) is also known as the prediction phase and part (b) is known

as the update phase. Combine these two parts, we formulate the base model

for the Kalman filters work. Intuitively, the whole process can be represented

as the diagram shown below:

Figure 2.2: Visualization Diagram of Kalman filter.
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2.3.2 Algorithm Derivation

We will develop the Kalman filter model in an induction manner. Given

many nice properties that Gaussian distribution holds, the derivation here will

mainly focus on variables that obey the Gaussian distribution.

Assume initial state: m0|0 = m0 ∼ N(m̄, P0), m̄ is the initial mean

and P0 = P0|0 for the initial covariance of the prior distribution.

µ(m0) ∝ exp(−1

2
(m0 − m̄)TP−1

0 (m0 − m̄)) (2.36)

Q0 characterizes the process noise of stochastic part of PDE so we

assume process noise: m1 − Fm0 ∼ N(0, Q0)

Taking observation matrix B into consideration, denote the data we can

observe as d0, with random observation noise covarianceR0, i.e: d0 − Bm0 ∼

N(0, R0) so we have follows:

µlikelihood = µ(d0|m0) ∝ exp(−1

2
(d0 −Bm0)TR−1

0 (d0 −Bm0)) (2.37)

By Theorem 2, plug in 2.6, we have

µposterior(m1|d0) ∝ exp(−1

2
(m0−m̄)TP−1

0 (m0−m̄)−1

2
(d0−Bm0)TR−1

0 (d0−Bm0))

(2.38)

As the product of two normal distributed random variables is also

normal[2], the goal is to find the mean and covariance of the predicted value

at a certain timestamp.
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The mean of the posterior distribution is the parameter vector that

maximizes the posterior. In other words, we want to find a mMAP that maxi-

mizing 2.38. Ignore the exponential sign and flip the negative sign, we have

mMAP := arg min J(m) :=
1

2
(m0−m̄)TP−1

0 (m0−m̄)+
1

2
(d0−Bm0)TR−1

0 (d0−Bm0)

(2.39)

Our goal is to construct m̂1|1 and P1|1 based on inputs. Here, the

derivation follow the flow chart in the Figure 2.2, that is: m0|0 → m1|0 →

m1|1, P0|0 → P1|0 → P1|1

2.3.2.1 Derivation of Mean

By equation 2.22, as we assume noise ξ0 ∼ N(0, C0), by definition, we

have

E[m̂1|0] = E[F0m̂0|0 + ξ0] (2.40)

As ξk is independent from m, we can separate that out and remove it.

So we have

E[m̂1|0] = E[F0m̂0|0] + E[ξ0] = E[F0m̂0|0] (2.41)

As here we only care about the mean, remove the Expectation operator

and finish the construction from m̂0|0 to m̂0|1. Now comes to construct m̂1|1

from m̂1|0. We actually “learn” more knowledge from the difference between

the actual observation and the transformation from the state to observation.

We hope the weighted combination of prior and the knowledge learned can
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offer us smaller error estimation. At the time k, we denote such operator as

Kk and is known as kalman gain.

m̂1|1 = m̂1|0 +K1(d1 −B1m̂1|0) (2.42)

where m̂1|1 should minimize equation 2.39. Combine 2.41 and 2.42, we have

finish the construction of m̂1|1 from m̂0|0

m̂1|1 = F0m̂0|0 +K0(d1 −BF0m̂0|0) (2.43)

2.3.2.2 Derivation of Covariance

Now comes the derivation on covariance matrix P .

First from P0|0 to P1|0. Apply Theorem 3 to variables in equation 2.22

P1|0 = F0P0|0F
T
0 +Q0 (2.44)

Then consider the way from P1|0 to P1|1. By definition of P1|1,

P1|1 = cov[(m1 − m̂1|1)] (2.45)

Plug in the definition of m̂1|1,

P1|1 = cov((m1 − [m̂1|0 +K1(d1 −B1x̂1|0)])) (2.46)

Substitute d1 equation 2.35 into equation above,

P1|1 = cov((m1 − [m̂1|0 +K1(B1m1 + η1 −B1m̂1|0)])) (2.47)
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As η1 is idnependent from all m’s, we can separate the term with η1

out and express the equation as

P1|1 = cov[(I −K1H1)(m1 − m̂1|0)] + cov(K1η1) (2.48)

By Theorem 3 and plug in the definition of P1|0 and R1, we have

P1|1 = (I −K1H1)P1|0(I −K1H1)T +K1R1K
T
1 (2.49)

Plug in P1|0 in 2.49 to 2.44, we have from P0|0 to P1|1:

P1|1 = (I −K1H1)(F0P0|0F
T
0 + C0)P0|0(I −K1H1)T +K1R1K

T
1 (2.50)

2.3.2.3 Derivation of Kalman Gain

Now let us tackle Kalman gain, a variable that can minimize the dif-

ference between mk and m̂k|k. In other words, it is the minimizer of Pk|k.

Expand Equation 2.49,

P1|1 = P1|0 −K1B1P1|0 − P1|0B
T
1 K

T
1 +K1(B1P1|0B

T
1 +R1)KT

1 (2.51)

Treat P as a function of K, take the derivative respect to K and set it

to 0.
∂ tr(P1|1)

∂K1

= −2(B1P1|0)T + 2K1(B1P1|0B
T
1 +R1) = 0 (2.52)

Solve for K1, we have the closed form for kalman gain:

K1 = P1|0B
T
1 (B1P1|0B

T
1 +R1)−1 (2.53)
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This concludes our derivation from state 0|0 to 1|1. For any state

onwards, by the Markov property, it can always be regarded as the state at

time 1 and follow the derivation above by referring the previous state. Plug

in Kk, we have the Kalman filter algorithm.

2.3.3 Kalman Filter Algorithm

Algorithm 1 Kalman Gain algorithm

1: R← R0, P ← P0 . R0: observation noise, P0: cov of m0

2: B ← B0 . B0 :Observation matrix
3: F ← F0 . F0 :Transition matrix
4: Q← Q0 . Q0 :process noise
5: Take a sample m0 ∼ N(m̄, P0) as initial state.
6: for i = 0, 1, 2, · · ·N − 1 do
7: d← di . Observation at iteration i
8: P ← FPF T +Q . Pi−1|i−1 → Pi|i−1

9: K = PB(R +BPBT )−1 . Formulate Kalman Gain
10: P = (I −KH)P . Pi|i−1 → Pi|i
11: m = Fm+K(d−BFm) . mi−1|i−1 → mi|i
12: end for
13: return m, P . The estimator: mN |N ∼ N(m,P )

In the next chapter, we will investigate the actual performance of the

Kalman filter against different initialization and setup of a PDE on different

metrics to evaluate its performance from different aspects.
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Chapter 3

Numerical Experiments

In this chapter, we implement the theoretical derivation from the previ-

ous chapters in hIPPYlib and numpy. We first examine the basic implementa-

tion of the algorithm and then move on to different variables in this algorithm

to reveal different aspects of the Kalman filter.

3.1 Independent Prior

Let us first examine a simple case where the prior data are independent

and process, observation noise are i.i.d. In this case, both Q0 and R0 are

diagonal matrices.

First, we need to include the mesh (Figure 3.1). For simplicity, we use

a simple mesh of 2023 points that looks like below and take 80 observation

points through observe operator B. It can not only be representative of the

space but also keep the computation performance.

F is the transition operator as in equation 2.34. Fk = T−1S,∀k ∈ R+

Encoding process noise standard deviation ξ0 = 0.02, observation noise

standard deviation η0 = 0.01, we have R0 = η2
0I and Q0 = ξ2

0I. In this case,

for simplicity, ∀t, Qt ≡ Q0, Rt ≡ R0. Also assume P0 = Q0.
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Including the time gap ∆t = 0.025s and the starting observation time

t0 = 0s

Later on, we will modify some of the initial conditions listed here and

examine what their effect will have on different metrics.

Figure 3.1: Mesh Graph for examining independent prior.

3.1.1 Eigenvalues of Independent prior

First, we will inspect eigenvalues. As Pt’s eigenvalue changes over time

and the magnitude also varies, we need a uniform standard for comparison.

Here, we would like to introduce a definition: eigenvalue ratio

Definition 3.1.1. Eigenvalue ratio

Let A be a matrix and λ0, λ1, · · ·λn−1 be its eigenvalues. Eigenvalue

ratio of an eigenvalue λk is | λk
max(λi)

|

It can be easily verified 0 ≤ eigenvalue ratio ≤ 1, also as we are dealing
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with covariance matrix, which is symmetric and positive definitem, we can

ignore the absolute sign in the definition.

At i-th iteration, sort the eigenvalue ratio list in descending order, for

j < 200, we have the following ratio trend for every second:

Figure 3.2: Eigenvalue ratio for independent prior change over time.

By Figure 3.2, at the 0-th iteration, the decay in eigenvalue ratio is

negligible, reflecting the eigenvalues are approximately the same. With the

elapse of time, we find that the gap between the 0-th and the 40-th iteration

is very big. This means the top eigenvalues are stood out and thus should

result in a smaller spectrum as the data are more concentrating to the top.

and then it gets much smaller. The difference between 40 and 80, 80 to 120,

· · · are negligible, this means convergence in later iterations.

In order to measure how the change of the hessian matrix behaves, we

need a metric to quantify it. Here we use the trace as the metric. As we know

that the trace of a matrix is equal to the sum of the (complex) eigenvalues
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[9] and by Theorem 4, we find the reciprocal sum of all eigenvalues in every

iteration, and then plot them with the increments in the iteration. The result

is shown in Figure 3.3. It has a general decaying trend, reflecting the hessian

matrix gets smaller and smaller. This verifies the effect of Kalman filter can

help us get a lower variance estimation. Also, it is very clear that most of the

decay in eigenvalues are concentrated in the first 25 iterations and later are

rather smoother, which is coherent with Figure 3.2 where most of the decay

of the eigenvalue ratio in the first couple of iterations and converges on later

iterations.

Figure 3.3: Decay of Hessian over time.

3.1.2 Eigenvectors of Independent Prior

Let us now examine the eigenvectors. Eigenvectors are of great impor-

tance to us as they characterize the distribution at that time. Here we examine

the top 3 eigenvectors when sort by their associated eigenvalues in descending

order.
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Figure 3.4: Top 3 Eigenvectors change over time given independent prior.

We can see some similarity from the graph above. For the eigenvectors

in the same column are alike but also changes gradually. This reflects the

gradual diffusion and advection process.
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3.1.3 Samples of Independent Prior

Now, let us consider the sample taken at some specific iteration. It can

intuitively reveal how the data behaves at a given time point. Same as the

eigenvector, we plot the data for every second.

Figure 3.5: Change of mean and sample over time for independent prior
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Figure 3.5 reflects the distribution of the state space. For a given itera-

tion, we first plot the mean to get an idea of how the center of the distribution

looks like, then plot 4 samples to avoid possible accidental outliers. By com-

paring these, we can get a rough idea of how the data evolves with the time

elapsed. Observe the graph above, our samples generally follow the true state

at that given time. On the other hand, it has a decreasing trend in the hessian,

meaning we are more and more certain about the actual distribution.

3.1.4 Vary on initial mean

In the setup of the problem, we have the initial mean set to be 0. When

compare with the true initial state, according to observation on Figure 3.5,

they are rather similar except for the point where the concentration originally

starts. Now the problem comes to for different initial states, will the estimation

still get closer to closer to the true state as well? We consider 5 different

initialization means. They are all 0’s, same as the true initial condition, all

1’s, half 1’s and half 0’s oscillate and that every entry follows the N(0.5, 0.5)

distribution respectively. Here the second 0.5 is the standard deviation. Their

initial covariance is all identical to be the P introduced at first.
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Figure 3.6: Error change for different mean with the progress of time.

From the graph shown above, we find that all zero initialization is

the nearest to the actual initial state. With the evolve of the system, all of

them have smaller and smaller errors and the best initialization have the best

estimation, the other initialization, converge to the same error as well. This

is consistent with what the stochastic theory states for the recurrent markov

chain, that is, if the system has a steady state, it will reach there that satisfy

π = πF , where F is the transition matrix between states, regardless of the

starting state.

We can also visually see the different converge effects like below by

examining the state every 100 iterations. so we will have the initial, middle

and end state.
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Figure 3.7: Visualization of Comparison of convergence of different initializa-
tion.

The graph in Figure 3.7 again verifies the trend of the change of the

substance. At first, it may have different initialization, but with the pass of the

time they are more and more alike, so they have similar errors when compare

to the real solution.

3.1.5 Effect of observation points

Observation points give us further information that used to shrink the

hessian of the observation. On one hand, generating enough observation points

can be representative of the state space. On the other hand, ample amount of

observation points hinder the performance.

Also, we can examine for a given specific initialization, how would the

error change with the increase of data points. Here, we use the initialization
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with all ones. As that is the initialization that farthest away from the true

value, it can trigger relative significant changes in error as shown in Figure

3.8. Similar to the x-axis before, here we examine a geometric sequence of the

number of data points. When examining the general trend, with the increase

of number of observation points, the error decreases faster, meaning the more

info gain from the observation actually contributes to the estimation in the

coming iteration. Also, we find that 1536 observation points have the data

almost converge but only 3 data points it just drops linearly and has not much

clue on convergence. More data reveals more about how the distribution of

the state will converge.

Figure 3.8: Effect of Different number of observation points on the change of
error for a specific initialization

Now let us investigate the effect of the number of observation points on

the error of the last estimation timestep. We know that with more observation

point we are more and more certain about where the state should be. Here we

are concerning the quantitative result, and also want to find out if different
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initialization has different effects on the decay of error.

Figure 3.9: Change of error with different observation point.

From 3.9, we take the same 5 initialization method as the previous part

and inspect the number of elements in a geometric sequence to be representa-

tive. With the increase of data points, the error in general are shrinking and

the gap between different estimation in error are small, which is an indicator

that it converges to the same point. Quantiatively, let us inspect the last two

iteration error.

ob point/type zero true one half-half N(0.5,0.5)
768 1.75112 1.75122 1.77799 1.78056 1.78285
1536 1.54470 1.54470 1.54509 1.54489 1.54450

Table 3.1: Different initialization last two iteration.

When the number of observation points is sufficiently large, the differ-

ence between these relative errors is about on the order of 10−2. In this way,

we can conclude that the initial guess does not affect our final result as long

as we have sufficient observation point. However, sufficient data point may be

hard to obtain and farther away initializations take significantly longer time
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to converge. A good strategy would be let the prior as close to the true initial

as possible, then with the help of outsourced information, we may decrease

the process noise and have small P to give us better certainty.

3.1.6 Vary on Noise

Noise can also be a factor that affects the performance of the Kalman

filter. In the exploration before, R and Q are of similar magnitude. For now,

let us investigate what will happen when these two are tremendously different.

Similar to the context before, we will use trace to measure the magnitude

of a matrix. In the settings below, we don’t change P0 and keep it same as

before, that is P = σ2I where σ = 0.02.Also, to avoid the duplicate meaning

of symbols, in context below, we use ≪ to represent far smaller than. i.e:

a≪ b means a is far smaller than b.

3.1.6.1 R ≪ Q

Here we keep the problem simple. Observation noise standard deviation

is ηk = 10−4 and the process noise standard deviation is ξk = 0.02. The decay

of the eigenvalue ratio and trace are like follows:
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Figure 3.10: Decay of hessian over
time for R ≪ Q.

Figure 3.11: Decay of eigenvalue
ratios over time for R ≪ Q.

As we can see from the left graph above, when R ≪ Q, the hessian

got significantly larger but have smaller relative decay. From the right graph,

the similar decay pattern also holds but it is much more skewed towards the

biggest eigenvalues. In the previous settings, the smallest eigenvalue ratio is

of magnitude 10−1. In this graph, however, it can be as small as 10−6, which

means many associated eigenvectors are negligible.

3.1.6.2 Q≪ R

Here we flip the initialization listed before so now the process noise

has the standard deviation of ξk = 10−4 and the observation noise standard

deviation is ηk = 0.02. The decay of the eigenvalue ratio and change of trace

are like follows:
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Figure 3.12: Rise of hessian over
time for Q≪ R.

Figure 3.13: Decay of eigenvalue
ratios over time for Q≪ R.

The performance for Q ≪ R is a reverse of R ≪ Q. In this case, the

observation noise accumulates in a much faster pace than that of the process

noise. In other words, the Kalman filter does not promote but rather hinder the

decrease of the hessian matrix. A similar scenario also applies to the eigenvalue

ratio. The Kalman filter may help the skewness of the smallest eigenvalues

but sacrifice the relatively bigger ones. As the operator is dominated by big

eigenvalues, such a routine is not effective. In all, we can conclude that the

Kalman filter does not work for the case Q≪ R.

The inaccuracy representation of the floating point number of computer

contributes to the totally different behavior of this case in hessian and eigen-

value ratio. To be specific, the computer may represent small eigenvalues that

are positive to be negative because of the round off error and thus make Pk

not symmetric positive definite anymore.
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3.1.7 Refined Mesh

Now consider a refined Mesh. The mesh takes 7863 points and dis-

tributes similarly with the non-refined version. This mesh reflects the state

space better but sacrifices the computation performance.

Figure 3.14: Refine Mesh Graph for Independent Prior.

As the Kalman filter algorithm is a quadratic order algorithm, When

increasing the number of points to 7863, it takes about (7863
2023

)2 ≈ 15 times

longer time than the non-refined one. With the huge computation complexity

and limited computation power, we only care about the mean and change time

gap ∆t = 0.25s to compensate for that.
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Figure 3.15: Comparison of mean of distribution between refined and unrefined
mesh.
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Also, similar to the metric inspection for the simplified version of the

mesh, we can inspect its eigenvalues as shown in Figure 3.16. From the graph,

it follows the skewed property introduced in Figure 3.2. However, compared

with Figure 3.2, at the same timestamp, the decrease in this is less skewed.

For example, the 4th iteration here for the 200th biggest eigenvalue

ratio is about one third point to 10−1, which is about 10−
2
3 ≈ 0.21 while in

Figure 3.2, its about 10−
3
2 ≈ 0.07. Such a difference mainly coming from the

less granularity in time, so less iteration has been experienced and thus the

top eigenvalues cannot standout.

Figure 3.16: Change of eigenvalue ratio with refined mesh.

3.2 Smooth Prior

Now let us consider a more complicated case by weakening the inde-

pendence requirements so that data points at the same time can have spatial

dependence with each other. In other words, the data at a given spatial coor-

dinate would be affected and also affects the other points. Such dependency
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makes the prior and distribution data onward smoother. For Q and R, we still

keep them diagonal as Q = ξ2I and R = η2I . Also, we use the simple mesh

as shown in Figure 3.1. Given the time-consuming part of sampling, here we

only care about the mean but ignore the covariance to be the estimator.

Figure 3.17: Mean change over time for dependent prior.
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As we can see Figure 3.17, in the dependent settings where we use

prior.R, the process diffuses much quicker than that of the independent case.

After 18× 0.025 = 0.45 second, the system almost totally diffused. Our mean

constructed by the Kalman filter follows the similar pattern as the true state

behaves but also have some extreme point on the boundary points, but the

anomaly happens on less and less part, reflecting better and better predictions

of the coming state.

Figure 3.18: Decay of hessian over
time for dependent prior.

Figure 3.19: Decay of eigenvalue
ratios over time for dependent
prior.

Examining the decay of hessian and eigenvalue ratio, we find that the

eigenvalues decay similar to the independent case and converge to similar

value as the independent case. The initial trace is greater than that of the

independent case as more dependency introduced. Also, Figure 3.19 verifies

the similar decay with the independent case, which concludes similar results

of most decay happen at first and then it converges.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

As we can see from discussions before, Kalman filter is a great method

that combines statistical background and applies to the PDE settings of an

engineering problem. It did a great job in reducing the variance of the Hessian

matrix and also reducing the gap between the true value and the predicted

value. It triggers the Gaussian distribution more and more centered at the

mean, which is verified by the eigenvalue ratio. Also, from the inspection

on the starting point, we find they can have different starts but the error

converges in the end, suggesting that the irrelevance of the starting point. We

also removed the independence and simple mesh and also find out the more

complex initial condition actually fosters the diffusion.

4.2 Future Work

As this report is just a starting point of inspection on the Kalman filter,

many metrics and algorithms are still to explore. For example, the data in the

real world maybe not complete, that is, we may have some timestamp that

does not have the observation point available, while at other times we may
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have duplicate data, so we might need to modify algorithm later and try algo-

rithms such as extended Kalman filter and ensemble Kalman filter to function

accordingly. Also, advection-diffusion equation has no control factor involved

in the prediction phase, we may examine another PDE with the control factor

and analyze the potential noise introduced by that as well.
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