
Investigation of the Accuracy and Performance of

Condition Number Estimation of a Square Matrix

Haocheng An
Institute for Computational Engineering and Sciences

Department of Computer Science
Department of Mathematics

The University of Texas at Austin
Email: haochengan@utexas.edu

Yiran Shen
Department of Mathematics

Department of Finance
The University of Texas at Austin
Email: shenyiran91@utexas.edu

Supervisor: Robert A. van de Geijn

August 12, 2016

1

Abstract

The condition number of a matrix quantifies how accurately the so-
lution to Ax = b is computed. More specifically, it equals the maximum
by which a relative error in the right-hand side b can be magnified into
the relative accuracy of the solution. In this study we examine Hagers
method for estimating the condition number of a matrix when using the
one-norm and infinity norm and see if any performance can be enhanced
by other methods. A preliminary result shows that while LAPACK gen-
erally works well, the performance can be enhanced in some cases while
still maintains reasonable results.

1 Introduction

LAPACK is one of the most popular numerical linear algebra software pack-
age. It offers many useful implementations of the matrices operations with
understandable code. Besides providing reasonable results for users, LAPACK
also gives us some auxiliary routines to better understand the result. DGECON,
One of these auxiliaries, is used to give feedbacks on how hard the problem is
in terms of small relative errors in input can magnify the output error. This is
also known as ”condition number” problem.

BLIS, BLAS-like Library Instantiation Software Framework [6], is another
numerical linear algebra library but concentrate on the high performance of
the code. This library is originally implemented in C with base level operation
”primitives”.

So we first implement the condition number estimation with the basic ”prim-
itives”. Later, we change some features of the matrix to see if the accuracy and
performance will have any difference.

2 Background

In order to derive the formula for computing the condition number of a
matrix, we need to provide following mathematical background first.

2.1 Norms

2.1.1 Vector Norms

Vectors are segments with a specific directions and sizes. The key compo-
nents of a vector is the direction and the size. The direction can be quantified
by unit vector. As to the size, in other words, how big or how small a vector is,
we use vector norms to quantify it.

The p− norm of a vector x is defined as

||x||p =

{
(
∑n
i=1 |xi|p)

1
p if 1 ≤ p <∞

max|xi| if p =∞

2

2.1.2 Matrix Norms

A matrix can be regarded as a functor applied to vectors, which causes linear
transformations on vectors. Sometimes people are interested in how much effect
can a matrix have at most on a vector norms, so corresponding to vector norms,
we define matrix norms.

For a given matrix Am∗n, and any vector x of dimension n, we define the
p− norm of matrix A as follows

||A||p = max
x6=0

||Ax||p
||x||p

2.2 Theorems

With the definitions above, we can derive following theorems.These are our
math ”primitives” for future algorithm understanding.

By convention, from this point on, we use upper case letters to denote ma-
trices, lower case letters to denote vectors and greek letters to denote constants.

1||Ax|| ≤ ||A|| ∗ ||x||
Proof: According to the definition of matrix norm, ||A||p ≥ ||Ax||p

||x||p . When

we put |x|| to the same side as ||A||, we have the above theorem.
2||A||p = max

||x||p=1
||Ax||p

Proof: ||A||p = max
||Ax||p
||x||p = max

||κAx̂||p
||κx̂||p = max||Ax||p

κ is the constant such that x = κx̂, where x̂ is the unit vector with same
direction as x.

3 ||A||1 = max
1≤j≤n

∑n
i=1 |Aij |

Proof ||A||1 = max
||x||p=1

||Ax||1 = max
1≤j≤n

∑n
i=1 |Aij |

4 ||A||∞ = max
1≤i≤n

∑n
j=1 |Aij |

Proof:||A||∞ = ||Ax||∞
||x||p=1

= max
1≤i≤n

∑n
j=1 |Aij |

5 ||A||1 = ||AT ||∞
Proof: This can be directly derived from Theorem 3 and Theorem 4.

2.3 Conditioning

We now want to explore how the perturbed of b can have effects on the result
of x [4]

For the exact equation, we have

Ax =b (1)

As b is perturbed, Actually we are solving

A(x+ δx) =b+ δb (2)

3

We want to explore an expression for the following κ

||δx||
||x||

≤κ ||δb||
||b||

(3)

According to equation(1) and Theorem 1,

||b|| ≤||A|| ∗ ||x|| (4)

Similarly, When we subtract (1) from (2) and apply theorem 1 to the original
equation we have

||δx|| ≤||A−1|| ∗ ||δb|| (5)

Rewrite equation (4) to fit the equation pattern in (3), we get

1

||x||
≤||A||
||b||

(6)

Multiply (5)(6) together,

||δx||
||x||

≤||A||||A−1|| ||δb||
||b||

(7)

The condition number is denoted and defined as κ(A) = ||A|| ∗ ||A−1||

3 Algorithms

From the definition of last part, the upper bound for this uncertainty only
determined by the matrix. Now the problem comes to how to find the value of
two multipliers. As we only concentrate on the 1-norm and infinity-norm of a
matrix given matrix A, ||A|| can be computed by iterates through the column
vector or row vectors respectively and maximize the one norm of it. The key
part lies on the computation of ||A−1||. Direct inverse the matrix and then find
vector norm is an O(n3) operation. We examine the code for LAPACK. It gives
us Hager’s algorithm, which is based on convexity theory and gradients. [2] As
this paper mainly focus on the performance of the code, we will not go deep in
the algorithm.

3.1 Hager’s Algorithm

The algorithm for computing the ||A−1||1 norm of a matrix is (The expression
in the last parenthesis(if any) denotes number of FLOPs(the cost of computa-
tion) required for that specific steps, which will be discussed later on.) [2, 5]

(1) Choose x = n−1(1, 1, 1 · · · , 1)T

(2) Factorize A = LU (2
3n

3)
(3) Solve Lb = x and Uy = b, (Solve Ay = x)(2n2)
(4) Set v = sign(A−1x) = sign(y)(n)

4

(5) Solve UT d = v and LT g = d(Solve AT g = v)(2n2)
(6) If ||g||∞ ≤ gTx,(n2 + 2n)
est||A−1||1 = ||A−1x||1
Otherwise x = ej where |gj | = ||g||∞ and return to step(3)
(7) Get pass the loop guard
When we are dealing with l∞ norm, given theorem 5 and the property of

the transpose of a matrix

A = LU ⇒ AT = UTLT

We can use the similar algorithm with above one but substitute several
matrices in Step 3 and Step 5 namely,

L→ UT

U → LT

LT → U

UT → L

After these substitutions, we can find ||A−1||∞.
For the norm of triangular matrices, the LU factorization is unnecessary.

Also, A = LU and either L or U can be the identity matrix, so two of the above
four triangular solve routines are not required.

3.2 Cost

Now we discuss the contents inside the parenthesis in the last subsection.
We first define flops. Flops is the number of operations need to compute in

a unit time. In previous section, we use n to denote the dimensions of a matrix.
The contents in the parenthesis is the specific flops required of that step. As we
deal with matrices with thousands of entries, if two steps are of different order
on n, the one with bigger exponents is harder to compute. If they are of same
order, the one with bigger coefficients is harder. For a step or routine, usually
the step with which is hardest to compute determine the general hardness of
the step or routine.

According to Theorem 5 and illustration in the previous subsection, the flops
required are same when computing the l1 and l∞ norm. Usually it takes about
2 iterations to stop. So we times the number of flops in (3)-(6) by 2 and sum it
up, the flops routine is of order O(n3)

For triangular case, as LU-factorization and half of the triangular solves
operations are not necessary, most of the work lies on the triangular solve. So
it is in general an order O(n2) algorithm.

5

3.3 The LAPACK Routine

However, when carefully examine DGECON, the LAPACK routine name for
condition number estimation, it requires the norm of A as a parameter to pass
in. [3]

SUBROUTINE DGECON(NORM, N, A, LDA, ANORM,
RCOND, WORK, IWORK,INFO)

In the comment part, the routine requires the matrix to be its LU factorized
form. If not familiar with the routine, users could input a wrong matrix to get
wrong result.[3]

A (input) DOUBLE PRECISION array , dimension (LDA,N)
The f a c t o r s L and U from the f a c t o r i z a t i o n
A = P∗L∗U as computed by DGETRF.

Also, when we look carefully in the DGECON routine, GOTO coding styles
are applied, which is considered harmful.[1] One of the reason lies on the hard-
ness of tractable of the code with GOTO method. Users have to jump around
the code several times to get the flow of the code. [3]

IF (SCALE.LT.ABS(WORK(IX))∗SMLNUM
.OR. SCALE.EQ.ZERO)
$ GO TO 20

CALL DRSCL(N, SCALE, WORK, 1)
END IF

GO TO 10
END IF

4 Performance and Accuracy

4.1 Generation of Testing Matrices

With the drawbacks in LAPACK mentioned above, we now implement our
own condition number estimation routine with same algorithms but based on
different libraries

For the implementation using BLIS library, we use the reference guide[6, 7].
For both performance and accuracy of the routine, the matrices are stored

by column major. Also, we use matrices whose entries are random numbers
generated from C libraries from interval (0, 1]. To achieve this, we use the
following code

(double) rand () / (double) RAND MAX

For the triangular case, we use lower triangular matrix. According to the
symmetrical property, upper matrices should give us similar result. We set the
diagonal entries to be 1 This is because if we still use random number, the expect

6

value of each diagonal entries to be 0.5. When we deal with big matrices, for
example 1000 entries, the determinant would be

(
1

2
)1000 =

1

(210)100
<

1

(103)100
=

1

10300

The matrix is nearly singular so that the condition number cannot work well.
Now let us discuss the size of those candidates matrices. For full matrices,

we set the upper bound to be 10000. For triangular matrices, we set it to be
5000. Based on the observation of the condition number, for the triangular case,
usually it grows dramatically with the growth of the size of the matrix. When
size reaches about 5000, condition number is about 10100. As the computer
is using 64 bits to represent real doubles, bigger condition numbers may cause
overflow and thus we don’t go to larger matrices.

4.2 Accuracy graphs

For the accuracy of the implementation, we examine the ratio between the
answer we get and the answer given by the mkl implementation.

The reason we use the ratio rather than the relative error is determined
by the characteristic of the condition number. We only care if the estimation
number is of the same order of the theoretical value. If yes, then the estimation
is satisfiable. As the same order should be [0.1, 10] times of the actual number,
we have the following definition:

An estimation is satisfiable if and only if

µ =
ActualV alue

TheoreticalV alue
∈ [0.1, 10]

If we use the relative error instead, however, we don’t have a corresponding
interval. For example, if the relative error is 0.99, we don’t know if the ratio
µ = 0.01 or µ = 1.99. As 0.01 /∈ [0.1, 10] but 1.99 ∈ [0.1, 10], If the former one,
the estimation is not satisfiable, If the latter one, it is satisfiable.

7

This pair of graphs shows the estimation and exact condition number of a
full matrix An∗n under l1 norm. The value of n is shown in x − axis of both
graphs. First graph show the real value of the estimation and theoretical value
of the condition number on y−axis. Second graph show their ratios on y−axis.

8

This pair of graphs shows the estimation and exact condition number of a
full matrix An∗n under l∞ norm. The value of n is shown in x − axis of both
graphs. First graph show the real value of the estimation and theoretical value
of the condition number on y−axis. Second graph show their ratios on y−axis.

9

As shown in the graphs, in the full matrix case, almost all y-values of those
points are within the satisfiable range.

For the triangular case, estimation works even better. Most of those points
are lies within [0.8, 1.4]. Even with inaccuracies, only 1 point hits the unsatisfi-
able range.

4.3 Performance graphs

Now let us consider the performance of these implementations. We use time
to reflect such property. In most scientific computing report, number of flops
per unit time seems like a reasonable choice. However, the unit flops is hard to
tell for the following 2 reasons.

1. In LAPACK routine, involves in too much error checking so the FLOPs
is hard to tell.

2. As illustrated in the algorithms part, The loop will end if and only if
||g||∞ ≤ gTx Though it usually reaches end in 2 3 iterations, it is still an
undetermined and we still need to judge it case by case.

By using time needs to compute, however, we can tell which one is efficient
simply by picking out the one using the least.

Now let us examine performance graphs.
All data coming from TACC Stampede System (Intel R© Xeon R© CPU E5-

2680, Sandy Bridge, 23.76 GFLOPS peak for single-core, 21.6 GFLOPS/core
peak for multi-core) processor using Intel C compiler version 15.0.2 with opti-
mization flag -O2.

10

The graphs above shows the performance of the condition number estimation
of a full matrix under l1 norm. The x− axis reflects the n of the matrix An∗n
and y−axis reflects the time needs to finish the estimation routine with second
unit given by LAPACK and BLIS, which are represented by mkl and fla in the
graph respectively. We can see the performance in general:

mkl > fla

11

The graphs above shows the performance of the condition number estimation
of a full matrix under l∞ norm. The x− axis reflects the n of the matrix An∗n
and y−axis reflects the time needs to finish the estimation routine with second
unit given by LAPACK and BLIS, which are represented by mkl and fla in the
graph respectively.We can see the performance in general:

mkl > fla

12

The graphs above shows the performance of the condition number estimation
of a triangular matrix under l1 norm. The x− axis reflects the n of the matrix
An∗n and y − axis reflects the time needs to finish the estimation routine with
second unit given by LAPACK, BLIS and C library. which are represented by
mkl, fla and Clib in the graph respectively. We can see the performance in
general:

fla > mkl > Clib

13

The graphs above shows the performance of the condition number estimation
of a triangular matrix under l1 norm. The x− axis reflects the n of the matrix
An∗n and y − axis reflects the time needs to finish the estimation routine with
second unit given by LAPACK, BLIS and C library. which are represented by
mkl, fla and Clib in the graph respectively. We can see the performance in
general:

mkl > Clib > fla

14

For full matrices , we can see that our implementation is a little slower than
the mkl one.

In triangular case, we also implement with C standard library without using
any routines coming from BLIS libraries or flame libraries. As it is directly from
the C library,we call it Clib. When calculate 1-norm, the fla performs best. For
the infinity norm, however, mkl works best.

Also, when we strictly examine the data for these three groups of numbers,
smaller matrices any use of the library won’t make much difference. Also, we
notice the significance in the difference of the performance of fla implementation
in L1 and L∞ norm. This may coming from the fact that all testing matrices
are column major stored. When compute ||A||∞, the compiler have to iterates
through rows and the distance between two adjacent entries in a row equals
the size of the matrix. Such accessing did not use the stride feature of the
caches and thus negatively effect the performance. Similar issues also occur
when performing the triangular solve subroutine.

When we compare the graph with full matrix performance and lower trian-
gular matrices performance, we can see that the blis library performs better in
the latter one but worse in the first one.

As the number of flops required illustrated in the ”ALGORITHMS” part, the
most time-consuming in the full matrices is LU factorization while triangular
solve in the triangular matrices case. So we now know that the hardness of the
performance in this routine is LU factorization.

5 Conclusion

Condition number is a key character of quantifying the errors in a linear system
of equations Ax = b. It provides an upper bound for the effect of relative
error of b can have on x. It is defined as κ(A) = ||A|| ∗ ||A−1||. However,
directly inverse the matrix is an expensive operation. Even if accuracy works,
other issues like round -off errors will make the algorithm unreliable. When we
look carefully into LAPACK, it shows the calculation of the inverse norm under
Hagers algorithm without actually invert the matrix.

However, given some drawbacks in the routine, we implement it in BLIS
library. It does not work any better for the full matrix but have a better
performance for the computing l1 norm.

Also, we find the libraries works relatively better than C implementation in
those big matrices with dimensions over 1000. For the matrix that dimension
less than 1000, C library implementation works almost as same as the high
performance library.

Future work would probably improve the LU factorization in the flame li-
brary. Also, write a better LU factorization algorithm for Clib implementation.
We do have the LU factorization but it is rather inaccurate for matrices with
dimensions over 50. So we did not include the result of that in the Performance
and Accuracy part.

15

Further, we can include the error checking, upper bound and lower bound
checking of entries of the matrix.

Acknowledgment

The authors would like to thank Robert A van de Geijn for his patient instruc-
tion and supervising. Also would like to thankful to Devin Matthew, Jianyu
Huang, Tyler M. Smith, Field G. Van Zee in the Science of High-Performance
Computing group for their generous help.

References

[1] Dijkstra, E, A case against the Goto statement, Communications of the
ACM, volume 11, pg 147, 1968.

[2] Philip Lance Shuler A search for Lapack condition estimator Counterexam-
ples Dec 1992.

[3] Lapack Condition Number Estimation
http://www.netlib.org/lapack/double/dgecon.f.

[4] Robert A van de Geijn Linear Algebra: Foundations to Frontiers A Collec-
tion of Notes on Numerical Linear Algebra
Jan 2016

[5] Higham, Nicholas J. ”A survey of condition number estimation for triangular
matrices.” SIAM(Society for Industrial and Applied Mathematics) Review
29.4 (1987): 575-596.

[6] BLIS API Quick Reference
https://github.com/flame/blis/wiki/BLISAPIQuickReference.

[7] Field G. Van Zee libflame The Complete Reference (version 5.1.0-21)
http://www.cs.utexas.edu/ flame/web/libflame.pdf

16

